Independent emergence of Yersinia ruckeri biotype 2 in the United States and Europe.
نویسندگان
چکیده
Biotype 2 (BT2) variants of the bacterium Yersinia ruckeri are an increasing disease problem in U.S. and European aquaculture and have been characterized as serovar 1 isolates that lack both peritrichous flagella and secreted phospholipase activity. The emergence of this biotype has been associated with an increased frequency of enteric redmouth disease (ERM) outbreaks in previously vaccinated salmonid fish. In this study, four independent specific natural mutations that cause the loss of both motility and secreted lipase activity were identified in BT2 strains from the United States, United Kingdom, and mainland Europe. Each of these was a unique mutation in either fliR, flhA, or flhB, all of which are genes predicted to encode essential components of the flagellar secretion apparatus. Our results demonstrate the existence of independent mutations leading to the BT2 phenotype; thus, this phenotype has emerged separately at least four times. In addition, BT2 strains from the United Kingdom were shown to have the same mutant allele found in U.S. BT2 strains, suggesting a common origin of this BT2 lineage. This differentiation of distinct BT2 lineages is of critical importance for the development and validation of alternative vaccines or other treatment strategies intended for the control of BT2 strains.
منابع مشابه
Identification of flagellar motility genes in Yersinia ruckeri by transposon mutagenesis.
Here we demonstrate that flagellar secretion is required for production of secreted lipase activity in the fish pathogen Yersinia ruckeri and that neither of these activities is necessary for virulence in rainbow trout. Our results suggest a possible mechanism for the emergence of nonmotile biotype 2 Y. ruckeri through the mutational loss of flagellar secretion.
متن کاملFirst report of Yersinia ruckeri biotype 2 in the USA.
A polyphasic characterization of atypical isolates of Yersinia ruckeri (causative agent of enteric redmouth disease in trout) obtained from hatchery-reared brown trout Salmo trutta in South Carolina was performed. The Y. ruckeri isolates were biochemically and genetically distinct from reference cultures, including the type strain, but were unequivocally ascribed to the species Y. ruckeri, base...
متن کاملYersinia ruckeri, the causative agent of enteric redmouth disease in fish
Enteric redmouth disease (ERM) is a serious septicemic bacterial disease of salmonid fish species. It is caused by Yersinia ruckeri, a Gram-negative rod-shaped enterobacterium. It has a wide host range, broad geographical distribution, and causes significant economic losses in the fish aquaculture industry. The disease gets its name from the subcutaneous hemorrhages, it can cause at the corners...
متن کاملInvasion and replication of Yersinia ruckeri in fish cell cultures
BACKGROUND Like many members of the Enterobacteriaceae family, Yersinia ruckeri has the ability to invade non professional phagocytic cells. Intracellular location is advantageous for the bacterium because it shields it from the immune system and can help it cross epithelial membranes and gain entry into the host. In the present manuscript, we report on our investigation regarding the mechanism...
متن کاملYersinia ruckeri Isolates Recovered from Diseased Atlantic Salmon (Salmo salar) in Scotland Are More Diverse than Those from Rainbow Trout (Oncorhynchus mykiss) and Represent Distinct Subpopulations.
UNLABELLED Yersinia ruckeri is the etiological agent of enteric redmouth (ERM) disease of farmed salmonids. Enteric redmouth disease is traditionally associated with rainbow trout (Oncorhynchus mykiss, Walbaum), but its incidence in Atlantic salmon (Salmo salar) is increasing. Yersinia ruckeri isolates recovered from diseased Atlantic salmon have been poorly characterized, and very little is kn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 77 10 شماره
صفحات -
تاریخ انتشار 2011